Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 108

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Iron-induced association between selenium and humic substances in groundwater from deep sedimentary formations

Terashima, Motoki; Endo, Takashi*; Kimuro, Shingo; Beppu, Hikari*; Nemoto, Kazuaki*; Amano, Yuki

Journal of Nuclear Science and Technology, 60(4), p.374 - 384, 2023/04

 Times Cited Count:2 Percentile:53.91(Nuclear Science & Technology)

Journal Articles

Unusually kinetically inert monocationic neptunyl complex with a fluorescein-modified 1,10-phenanthroline-2,9-dicarboxylate ligand; Specific separation and detection in gel electrophoresis

Yamagata, Kazuhito*; Ouchi, Kazuki; Marumo, Kazuki*; Tasaki-Handa, Yuiko*; Haraga, Tomoko; Saito, Shingo*

Inorganic Chemistry, 62(2), p.730 - 738, 2023/01

 Times Cited Count:2 Percentile:78.4(Chemistry, Inorganic & Nuclear)

The inert NpO$$_{2}$$$$^{+}$$ complex with a fluorescein-modified phenanthroline-2,9-dicarboxylic acid was found by kinetic selection using polyacrylamide gel electrophoresis (PAGE) from a small chemical library. The small spontaneous dissociation rate constant of 8$$times$$10$$^{-6}$$ s$$^{-1}$$ (the half-life of 23 hours) was determined. This is the singly-charged NpO$$_{2}$$$$^{+}$$ complex exhibiting unusual kinetic inertness in aqueous solution, one million times slower than widely accepted fast kinetics of neptunyl complexes. Selective fluorescence detection of NpO$$_{2}$$$$^{+}$$ was achieved in PAGE with a detection limit of 68 pmol dm$$^{-3}$$(17 fg). This system was successfully applied to simulated spent nuclear fuel and high-level radioactive waste samples.

Journal Articles

Numerical reproduction of the seasonal variation in dissolved uranium in Lake Biwa

Saito, Tatsuo; Yamazawa, Hiromi*; Mochizuki, Akihito

Journal of Environmental Radioactivity, 255, p.107035_1 - 107035_14, 2022/12

 Times Cited Count:0 Percentile:0(Environmental Sciences)

The seasonal variation of dissolved U (DU) in Lake Biwa was reproduced by the following model and parameter research. The introduced models are the water-DU mass balance, and the ion exchange between UO$$_{2}$$$$^{2+}$$ and H$$^{+}$$ on the lakeshore soil. The optimized parameters were the CEC of the lakeshore, TU as the sum of DU and AU (soil adsorbed U), kads and kdes as the first order reaction rate coefficients during rapid soil adsorption and desorption of U, respectively. Tabulated by the chemical equilibria constituting DU and analyzed the contribution of each chemical species, it is shown that the seasonal variation of DU is caused by the seasonal variation of pH. A correction to the ion-exchange equilibrium to shift to first order rate reaction only when the daily AU ratio increased above kads or decreased below kdes, improved the reproducibility of DU measurements and reproduced the delay of the DU peak from the pH peak.

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-028, 54 Pages, 2022/11

JAEA-Review-2022-028.pdf:2.97MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of Tailor-made Adsorbents for Uranium Recovery from Seawater on the Basis of Uranyl Coordination Chemistry" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to develop a new ligand class for efficient and selective capture of uranium from seawater. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study fundamental coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology …

Journal Articles

Study on the relation between the crystal structure and thermal stability of FeUO$$_{4}$$ and CrUO$$_{4}$$

Akiyama, Daisuke*; Kusaka, Ryoji; Kumagai, Yuta; Nakada, Masami; Watanabe, Masayuki; Okamoto, Yoshihiro; Nagai, Takayuki; Sato, Nobuaki*; Kirishima, Akira*

Journal of Nuclear Materials, 568, p.153847_1 - 153847_10, 2022/09

 Times Cited Count:3 Percentile:68.71(Materials Science, Multidisciplinary)

FeUO$$_{4}$$, CrUO$$_{4}$$, and Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ are monouranates containing pentavalent U. Even though these compounds have similar crystal structures, their formation conditions and thermal stability are significantly different. To determine the factors causing the difference in thermal stability between FeUO$$_{4}$$ and CrUO$$_{4}$$, their crystal structures were evaluated in detail. A Raman band was observed at 700 cm$$^{-1}$$ in all the samples. This Raman band was derived from the stretching vibration of the O-U-O axis band, indicating that Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ was composed of a uranyl-like structure in its lattice regardless of its "x"' value. M$"o$ssbauer measurements indicated that the Fe in FeUO$$_{4}$$ and Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ were trivalent. Furthermore, Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ lost its symmetry around Fe$$^{mathrm{III}}$$ with increasing electron densities around Fe$$^{mathrm{III}}$$, as the abundance of Cr increased. These results suggested no significant structural differences between FeUO$$_{4}$$ and CrUO$$_{4}$$. Thermogravimetric measurements for UO$$_{2}$$, FeUO$$_{4}$$, and CrUO$$_{4}$$ showed that the temperature at which FeUO$$_{4}$$ decomposed under an oxidizing condition (approximately 800 $$^{circ}$$C) was significantly lower than the temperature at which the decomposition of CrUO$$_{4}$$ started (approximately 1250 $$^{circ}$$C). Based on these results, we concluded that the decomposition of FeUO$$_{4}$$ was triggered by an "in-crystal" redox reaction, i.e., Fe$$^{mathrm{III}}$$ $${+}$$ U$$^{mathrm{V}}$$ $$rightarrow$$ Fe$$^{mathrm{II}}$$ $${+}$$ U$$^{mathrm{VI}}$$, which would not occur in the CrUO$$_{4}$$ lattice because Cr$$^{mathrm{III}}$$ could never be reduced under the investigated condition. Finally, the existence of Cr$$^{mathrm{III}}$$ in FexCr$$_{1-x}$$UO$$_{4}$$ effectively suppressed the decomposition of the Fe$$_{x}$$Cr$$_{1-x}$$UO$$_{4}$$ crystal, even at a very low Cr content.

Journal Articles

Rotation of complex ions with ninefold hydrogen coordination studied by quasielastic neutron scattering and first-principles molecular dynamics calculations

Omasa, Yoshinori*; Takagi, Shigeyuki*; Toshima, Kento*; Yokoyama, Kaito*; Endo, Wataru*; Orimo, Shinichi*; Saito, Hiroyuki*; Yamada, Takeshi*; Kawakita, Yukinobu; Ikeda, Kazutaka*; et al.

Physical Review Research (Internet), 4(3), p.033215_1 - 033215_9, 2022/09

Journal Articles

Marking actinides for separation; Resonance-enhanced multiphoton charge transfer in actinide complexes

Matsuda, Shohei; Yokoyama, Keiichi; Yaita, Tsuyoshi; Kobayashi, Toru; Kaneta, Yui; Simonnet, M.; Sekiguchi, Tetsuhiro; Honda, Mitsunori; Shimojo, Kojiro; Doi, Reisuke; et al.

Science Advances (Internet), 8(20), p.eabn1991_1 - eabn1991_11, 2022/05

 Times Cited Count:6 Percentile:58.16(Multidisciplinary Sciences)

no abstracts in English

Journal Articles

Sorption of Cs$$^{+}$$ and Eu$$^{3+}$$ ions onto sedimentary rock in the presence of gamma-irradiated humic acid

Zhao, Q.*; Saito, Takeshi*; Miyakawa, Kazuya; Sasamoto, Hiroshi; Kobayashi, Taishi*; Sasaki, Takayuki*

Journal of Hazardous Materials, 428, p.128211_1 - 128211_10, 2022/04

 Times Cited Count:5 Percentile:62.11(Engineering, Environmental)

The influence of humic acid and its radiological degradation on the sorption of Cs$$^{+}$$ and Eu$$^{3+}$$ by sedimentary rock was investigated to understand the sorption process of metal ions and humic substances. Aldrich humic acid (HA) solution was irradiated with different doses of gamma irradiation using a Co-60 gamma-ray source prior to the contact between the metal ions and the solid sorbent. The HA molecule decomposed to smaller molecules with a lower complexation affinity. Batch sorption experiments were performed to evaluate the effect of gamma-irradiated HA on the sorption of Cs$$^{+}$$ and Eu$$^{3+}$$ ions. The addition of non-irradiated HA weakened the sorption of Eu because of the lower sorption of the neutral or negatively charged Eu-HA complexes compared with free Eu ions. The sorption of monovalent Cs ions was barely affected by the presence of HA and its gamma irradiation. The concentration ratio of HA complexed species and non-complexed species in the solid and liquid phases was evaluated by sequential filtration and chemical equilibrium calculations. The ratios supported the minimal contribution of HA to Cs sorption. However, the concentration ratio for Eu$$^{3+}$$ in the liquid phase was high, indicating that the complexing ability of HA to Eu$$^{3+}$$ was higher than that of HA to Cs$$^{+}$$ ions. Therefore, the sorption of free Eu$$^{3+}$$ would predominate with the gamma irradiation dose applied to the HA solution under a radiation field near the HLW package.

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-041, 42 Pages, 2022/01

JAEA-Review-2021-041.pdf:2.03MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry" conducted in FY2020. On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology from seawater and to develop novel selective and efficient adsorbents for this purpose.

Journal Articles

Stoichiometry between humate unit molecules and metal ions in supramolecular assembly induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ measured by gel electrophoresis techniques

Nakano, Sumika*; Marumo, Kazuki*; Kazami, Rintaro*; Saito, Takumi*; Haraga, Tomoko; Tasaki-Handa, Yuiko*; Saito, Shingo*

Environmental Science & Technology, 55(22), p.15172 - 15180, 2021/11

 Times Cited Count:5 Percentile:35.21(Engineering, Environmental)

Humic acid (HA) can strongly complex with metal ions to form a supramolecular assembly via coordination binding. However, determining the supramolecular size distribution and stoichiometry between small HA unit molecules constituting HA supramolecule and metal ions has proven to be challenging. Here, we investigated the changes in the size distributions of HAs induced by Cu$$^{2+}$$ and Tb$$^{3+}$$ ions using a unique polyacrylamide gel electrophoresis (PAGE) for the separation and quantification of HA complexes and metal ions bound, followed by UV-Vis spectroscopy and EEM-PARAFAC. It was found that the supramolecular behaviors of Cu$$^{2+}$$ and Tb$$^{3+}$$ complexes with HA collected from peat and deep groundwater (HHA) differed. Our results suggest that this supramolecular stoichiometry is related to the abundance of sulfur atoms in the elemental composition of HHA. Our results provide new insights into HA supramolecules formed via metal complexation.

Journal Articles

Surface complexation of Ca and competitive sorption of divalent cations on montmorillonite under alkaline conditions

Sugiura, Yuki; Ishidera, Takamitsu; Tachi, Yukio

Applied Clay Science, 200, p.105910_1 - 105910_10, 2021/01

 Times Cited Count:6 Percentile:51.59(Chemistry, Physical)

JAEA Reports

Development of tailor-made adsorbents for uranium recovery from seawater on the basis of uranyl coordination chemistry (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-026, 41 Pages, 2020/12

JAEA-Review-2020-026.pdf:3.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of Tailor-Made Adsorbents for Uranium Recovery from Seawater on the Basis of Uranyl Coordination Chemistry". On the basis of deep understanding on uranyl coordination chemistry, we design molecular structures of pentadentate ligands as functional moieties for uranium adsorption from seawater and study coordination chemistry of uranyl ion with those ligands in order to resolve current problems in uranium recovery technology from seawater and to develop novel selective and efficient adsorbents for this purpose.

Journal Articles

Measurement of thick target neutron yield at 180$$^{circ}$$ for a mercury target induced by 3-GeV protons

Matsuda, Hiroki; Iwamoto, Hiroki; Meigo, Shinichiro; Takeshita, Hayato*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 483, p.33 - 40, 2020/11

 Times Cited Count:3 Percentile:36.4(Instruments & Instrumentation)

A thick target neutron yield for a mercury target at an angle of 180$$^{circ}$$ from the incident beam direction is measured with the time-of-flight method using a 3-GeV proton beam at the Japan Proton Accelerator Research Complex (J-PARC). Comparing the experimental result with a Monte Carlo particle transport simulation by the Particle and Heavy Ion Transport code System (PHITS) shows that there are apparent discrepancies. We find that this trend is consistent with an experimental result of neutron-induced re- action rates obtained using indium and niobium activation foils. Comparing proton-induced neutron-production double-differential cross-sections for a lead target at backward directions between the PHITS calculation and experimental data suggests that the dis- crepancies for our experiments would be linked to the neutron production calculation around 3 GeV by the PHITS spallation model and/or the calculation of nonelastic cross-sections around 3 GeV in the particle transport simulation.

Journal Articles

Consideration on modeling of Nb sorption onto clay minerals

Yamaguchi, Tetsuji; Ohira, Saki; Hemmi, Ko; Barr, L.; Shimada, Asako; Maeda, Toshikatsu; Iida, Yoshihisa

Radiochimica Acta, 108(11), p.873 - 877, 2020/11

 Times Cited Count:7 Percentile:66.68(Chemistry, Inorganic & Nuclear)

Journal Articles

Thermodynamic interpretation of uranium(IV/VI) solubility in the presence of $$alpha$$-isosaccharinic acid

Kobayashi, Taishi*; Sasaki, Takayuki*; Kitamura, Akira

Journal of Chemical Thermodynamics, 138, p.151 - 158, 2019/11

 Times Cited Count:3 Percentile:14.74(Thermodynamics)

The effect of $$alpha$$-isosaccharinic acid (ISA) on the solubility and redox of tetravalent and hexavalent uranium (U(IV), U(VI)) was investigated in the hydrogen ion concentration (pH$$_{c}$$) range of 6$$sim$$13 and at total ISA concentration ([ISA]$$_{rm tot}$$) = 10$$^{-4}$$$$sim$$10$$^{-1.2}$$ mol/dm$$^{3}$$. The dependence of U(IV) solubility on pH$$_{c}$$ and [ISA]$$_{rm tot}$$ suggested the existence of U(OH)$$_{4}$$(ISA)$$_{2}$$$$^{2-}$$ as a dominant species within the investigated pH$$_{c}$$ range of 6$$sim$$12. For the U(VI)-ISA system, UO$$_{2}$$(OH)$$_{3}$$(ISA)$$_{2}$$$$^{2-}$$ was suggested as a dominant species at pH$$_{c}$$ 7$$sim$$13. The formation constants of the U(IV)-ISA and U(VI)-ISA complexes were determined by least-squares fitting of the solubility data. The solubility of U(IV) and U(VI) in the presence of ISA and its effect on the redox behavior were thermodynamically interpreted based on the obtained constants.

Journal Articles

Extraction mechanism of lanthanide ions into silica-based microparticles studied by single microparticle manipulation and microspectroscopy

Otaka, Toshiki*; Sato, Tatsumi*; Ono, Shimpei; Nagoshi, Kohei; Abe, Ryoji*; Arai, Tsuyoshi*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Nakatani, Kiyoharu*

Analytical Sciences, 35(10), p.1129 - 1133, 2019/10

 Times Cited Count:9 Percentile:40.49(Chemistry, Analytical)

Journal Articles

Thermodynamic equilibrium constants for important isosaccharinate reactions; A Review

Rai, D.*; Kitamura, Akira

Journal of Chemical Thermodynamics, 114, p.135 - 143, 2017/11

 Times Cited Count:9 Percentile:19.61(Thermodynamics)

Isosaccharinic acid is a cellulose degradation product that can form in low-level nuclear waste repositories and is known to form strong complexes with many elements, including actinides, disposed of in these repositories. We (1) reviewed the available data for deprotonation and lactonisation constants of isosaccharinic acid, and the isosaccharinate binding constants for Ca, Fe(III), Th, U(IV), U(VI), Np(IV), Pu(IV), and Am(III), (2) summarized complexation constant values for predicting actinide behavior in geologic repositories in the presence of isosaccharinate, and (3) outlined additional studies to acquire reliable thermodynamic data where the available data are inadequate.

Journal Articles

A Thermodynamic model for the solubility of HfO$$_{2}$$(am) in the aqueous K$$^{+}$$ - HCO$$_{3}$$$$^{-}$$ - CO$$_{3}$$$$^{2-}$$ - OH$$^{-}$$ - H$$_{2}$$O system

Rai, D.*; Kitamura, Akira; Rosso, K.*

Radiochimica Acta, 105(8), p.637 - 647, 2017/08

 Times Cited Count:2 Percentile:19.65(Chemistry, Inorganic & Nuclear)

Solubility of HfO$$_{2}$$(am) was determined as a function of KHCO$$_{3}$$ concentrations ranging from 0.001 mol.kg$$^{-1}$$ to 0.1 mol.kg$$^{-1}$$. The solubility of HfO$$_{2}$$(am) increased dramatically with the increase in KHCO$$_{3}$$ concentrations, indicating that Hf(IV) makes strong complexes with carbonate. Thermodynamic equilibrium constants for the formation of Hf-carbonate complexes were determined using both the Pitzer and SIT models. The dramatic increase in Hf concentrations with the increase in KHCO$$_{3}$$ concentrations can best be described by the formation of Hf(OH-)$$_{2}$$(CO$$_{3}$$)$$_{2}$$$$^{2-}$$ and Hf(CO$$_{3}$$)$$_{5}$$$$^{6-}$$. The log$$_{10}$$ K$$^{0}$$ values for the reactions [Hf$$^{4+}$$ + 2 CO$$_{3}$$$$^{2-}$$ +2 OH$$^{-}$$ $$leftrightarrow $$ Hf(OH)$$_{2}$$(CO$$_{3}$$)$$_{2}$$$$^{2-}$$] and [Hf$$^{4+}$$ + 5 CO$$_{3}$$$$^{2-}$$ $$leftrightarrow $$ Hf(CO$$_{3}$$)$$_{5}$$$$^{6-}$$], based on the SIT model, were determined to be 44.53 $$pm$$ 0.46 and 41.53 $$pm$$ 0.46, respectively.

Journal Articles

Thermodynamic model for Zr solubility in the presence of gluconic acid and isosaccharinic acid

Kobayashi, Taishi*; Teshima, Takeshi*; Sasaki, Takayuki*; Kitamura, Akira

Journal of Nuclear Science and Technology, 54(2), p.233 - 241, 2017/02

 Times Cited Count:6 Percentile:51.46(Nuclear Science & Technology)

Zr solubility in the presence of gluconic acid (GLU) and isosaccharinic acid (ISA) was investigated as a function of hydrogen ion concentration (pH$$_{rm c}$$) and the total concentration of GLU or ISA. The dependence of the increase in Zr solubility on the pH$$_{rm c}$$ and GLU concentration suggested the existence of Zr(OH)$$_{4}$$(GLU)$$_{2}$$$$^{2-}$$ in the neutral pH region and Zr(OH)$$_{4}$$(GLU)(GLU$$_{rm -H}$$)$$^{3-}$$ in the alkaline pH region above pH$$_{rm c}$$ 10 as the dominant species in the presence of 10$$^{-3}$$ - 10$$^{-1}$$ mol/dm$$^{3}$$ (M) GLU. In the presence of ISA, the dominant species Zr(OH)$$_{4}$$(ISA)$$_{2}$$$$^{2-}$$ and Zr(OH)$$_{4}$$(ISA)(ISA$$_{rm -H}$$)$$^{3-}$$ were proposed to occur in the neutral and alkaline pH regions, similar to those found in the presence of GLU. From X-ray diffraction analysis, the solubility-limiting solid phase in the presence of GLU and ISA was considered to be Zr(OH)$$_{4}$$(am). The formation constants of the Zr gluconate and isosaccharinate complexes were determined by least squares fitting analysis of the solubility data, and the obtained values were discussed in comparison with those of tetravalent actinides.

Journal Articles

Sorption behavior of thorium onto granite and its constituent minerals

Iida, Yoshihisa; Yamaguchi, Tetsuji; Tanaka, Tadao; Hemmi, Ko

Journal of Nuclear Science and Technology, 53(10), p.1573 - 1584, 2016/10

 Times Cited Count:10 Percentile:64.88(Nuclear Science & Technology)

The sorption behavior of thorium (Th) onto granitic rock and its major constituent were investigated by batch sorption experiments. Experiments were carried out under variable pH and carbonate concentrations. Distribution coefficients decreased with increased carbonate concentrations and showed the minimal value at pH 9-10. This sorption tendency was likely due to forming the hydroxide-carbonate complexes of Th in the solutions. The order of sorbability for Th was mica $$>$$ feldspar $$>$$ quartz = granite. The sorption behaviors of Th onto these minerals were analyzed by the triple-layer surface complexation model with the Visual Minteq computer program. The model calculations assuming the inner-sphere surface complexation of Th were able to explain the experimental results reasonably well. It was shown that the sorption behavior of Th onto granite can be explained primarily by the complexation with the surface sites of feldspar.

108 (Records 1-20 displayed on this page)